Name:	Date:	Doc #: 14
nume.	 Dure	DOC # 1 1 T

Photosynthesis and Cellular Respiration Notes

(Adenosine Triphosphate): principle chemical compound that cells use to store and release energy. ATP consists of: 1.		e of all energy.	
are organisms that make their own food. (like)	Autotrophs and Heterotrophs		
obtain energy from the foods that they consume. Chemical Energy and ATP(Adenosine Triphosphate): principle chemical compound that cells use to store and release energy. ATP consists of: 1	Energy is	·	
Chemical Energy and ATP	are orga	anisms that make their own food. (like)
(Adenosine Triphosphate): principle chemical compound that cells use to store and release energy. ATP consists of: 1	obtain e	energy from the foods that they consume.	
1	Chemical Energy and ATP		
ATP consists of: 1	(Adenosine Triphosphate):	principle chemical compound that cells us	se to store and
1	release energy.		
2	ATP consists of:		
Phosphate groups are the key to ATPs ability to store and release energy. Energy is released by	1		—P—P—P
Phosphate groups are the key to ATPs ability to store and release energy. Energy is released by	2		
Energy is released by	3		
Energy is released by the chemical bond between the and phosphate in ATP. Adenosine Diphosphate () looks almost like ATP, except that it has groups instead of three. When available, energy is stored by adding a phosphate group to ADP making ATP. Using Biochemical Energy Most cells have only a small amount of ATP, enough to last them for a of activit Energy from ATP powers the of proteins and nucleic acids, responses to chemical the cell surface, and can even be used to produce light. Photosynthesis	Phosphate arouns are the key to ATPs abilit	ty to store and release energy	
and phosphate in ATP. Adenosine Diphosphate () looks almost like ATP, except that it has groups instead of three. When available, energy is stored by adding a phosphate group to ADP making ATP. Using Biochemical Energy Most cells have only a small amount of ATP, enough to last them for a of activit Energy from ATP powers the of proteins and nucleic acids, responses to chemical the cell surface, and can even be used to produce light. Photosynthesis	, , , , , , , , , , , , , , , , , , , ,		
Adenosine Diphosphate () looks almost like ATP, except that it has groups instead of three. When available, energy is stored by adding a phosphate group to ADP making ATP. Using Biochemical Energy Most cells have only a small amount of ATP, enough to last them for a of activit Energy from ATP powers the of proteins and nucleic acids, responses to chemical the cell surface, and can even be used to produce light. Photosynthesis	·		ı the
groups instead of three. When available, energy is stored by adding a phosphate group to ADP making ATP. Using Biochemical Energy Most cells have only a small amount of ATP, enough to last them for a of activit Energy from ATP powers the of proteins and nucleic acids, responses to chemical the cell surface, and can even be used to produce light. Photosynthesis	and phosph	hate in AIP.	
When available, energy is stored by adding a phosphate group to ADP making ATP. Using Biochemical Energy Most cells have only a small amount of ATP, enough to last them for a of activit Energy from ATP powers the of proteins and nucleic acids, responses to chemical the cell surface, and can even be used to produce light. Photosynthesis	Adenosine Diphosphate () looks alr	most like ATP, except that it has	· · · · · · · · · · · · · · · · · · ·
Using Biochemical Energy Most cells have only a small amount of ATP, enough to last them for a of activit Energy from ATP powers the of proteins and nucleic acids, responses to chemical the cell surface, and can even be used to produce light. Photosynthesis	groups instead of three.		
Using Biochemical Energy Most cells have only a small amount of ATP, enough to last them for a of activit Energy from ATP powers the of proteins and nucleic acids, responses to chemical the cell surface, and can even be used to produce light. Photosynthesis	When available energy is stored by adding a	a phosphate aroun to ADP making ATP	
Most cells have only a small amount of ATP, enough to last them for a of activit Energy from ATP powers the of proteins and nucleic acids, responses to chemical the cell surface, and can even be used to produce light. Photosynthesis	When available, energy is stored by adding t	a phosphare group to Nor making NTT.	
Energy from ATP powers the of proteins and nucleic acids, responses to chemical the cell surface, and can even be used to produce light. Photosynthesis			
the cell surface, and can even be used to produce light. Photosynthesis	Most cells have only a small amount of ATP,	, enough to last them for a	of activity.
the cell surface, and can even be used to produce light. Photosynthesis	Energy from ATP powers the	of proteins and nucleic acids, respon	nses to chemicals at
·			
·	Dhaha ay walla a da		
Photosynthesis is the process where a plant uses the $___$ $___$ to convert water and carl	•	tuses the to conver	rt water and carbon
dioxide into high energy carbohydrates (sugars and starches)	Photosynthesis is the process where a plant		Twater and carbon
Photosynthesis equation: 6CO2 + 6H2O C6H12O6 + O2			
	dioxide into high energy carbohydrates (sug	- 6H₂O	+O ₂

In plants, chloropl	asts contain	,	tho	at absorb	light. These	pigment	s are called
Chlorophyll		all c				·	
The Chloroplast	Inner — Membrane	Outer Membrane					
<u>Step 1</u> : The LIGH energy through ele							
<u>Step 2:</u> The DARK NADPH as energy							sing ATP and
2 Photosynthesis	the rate of pho needs enzymes, r too little	can slo :Too ; high or low te	HOT or too mperature c	COLD ca	in slow or sto own enzymes	and den	iature them
		Cellula	r Respiratio	n			
Cellular Respiratio	n Equation						
602	+ C ₆ H ₁₂ O ₆	\rightarrow	6 <i>CO</i> ₂	+	6H₂O	++	АТР
Cellular Respiratio	•			•	ing down the		

Cellular respiration occurs in the	of eukaryotes.
In the presence of Oxygen () Cellular respiration has three steps:
 Glycolysis the Krebs Cycle 	Outer membrane Cristae Inner membrane Matrix
3. the Electron Transport Chain	an harding the
FERMENTATION	
occurs when	is present.
This process can also be called fermentation and or breaking down glucose.	nly produces amounts of when
■ Aerobic respiration produces ~36 ATP per g	lucose
 Anaerobic respiration produces 2 ATP per g 	lucose
Two main types are 1. Alcoholic (and)
2. Lactic acid (when your	after exercise)
Fermentation does not release a lot of energy.	
Photosynthesis	vs. Cellular Respiration
energy - plants get the energy from sunlight.	energy to break down food.
	carbon dioxide into the air.
Carbon dioxide from the	
air.	
oxygen into the air.	oxygen from the air.
Occurs only in plants, algae and some bacteria.	Occurs in Eukaryotes and Prokaryotes.

Use the information below to color code and label the pictures on your foldable.

Chloroplasts and Mitochondria

Plant cells contain an organelle called the **chloroplast**. The chloroplast allows plants to harvest **energy** from **sunlight**. Specialized pigments in the chloroplast (including the common green pigment **chlorophyll**) absorb sunlight and use this energy to complete the chemical reaction:

6
$$CO_2$$
 + 6 H_2O + energy (from sunlight) \longrightarrow $C_6H_{12}O_6$ + 6 O_2

In this way, plant cells manufacture **glucose** and other **carbohydrates** that they can store for later use. Photosynthetic cells may have **thousands** of chloroplasts. Chloroplasts are double membrane organelles with an inner membrane folded into disc-shaped sacs called **thylakoids**. Thylakoids contain chlorophyll and other **accessory pigments**, and are in stacks called **granum** (**grana**, plural). Grana are connected to each other by structures called lamellae, and they are surrounded by a gel-like material called **stroma**.

Figure 1:

Color and label the inner membrane <u>light green</u>.

Color and label the grana (stacks) <u>dark green</u>.

Color and label the stroma <u>light blue</u>.

Figure 2:

Color and label a single thylakoid (disc) <u>purple</u>.

Color and label a granum stack <u>red</u>.

Mitochondria are the powerhouses of the cell. Glucose and other carbohydrates made by plants during photosynthesis are broken down by the process of aerobic cellular respiration in the mitochondria of the cell. This releases energy (ATP) for the cell. The more active a cell (such as a muscle cell), the more mitochondria it will have. The mitochondria are bout the size of a bacterial cell and are often peanut-shaped. Mitochondria have a double membrane like the nucleus and chloroplast. The outer membrane is smooth, while the inner membrane is convoluted into folds called cristae. This greatly increases the surface area of the membrane so that carbohydrates (simple sugars) can combine with oxygen to produce ATP, adenosine triphosphate (the energy molecule of the cell). The electron transport chain takes place across the membranes of the cristae (crista, singular). Inside the folds or cristae is a space called the matrix that contains enzymes needed for the Kreb's Cycle.

Figure 3:

Color and label the outer membrane pink.
Color and label the cristae red.
Color and label the matrix yellow.