Name:_

Evidence of Evolution

The amino acids below are found in the protein beta hemoglobin. This protein is generally 148 amino acids in length. To conserve space, only the amino acids where differences exist have been provided to you.

Amino Acid	o conserve space, only the amino acids where differences exist have been provided to yo Species 1 Species 2 Species 3 Species 4 Species				Species 5
Number	Opecies I	Opecies 2	Opecies J	Opecies 4	Opecies J
1	Valine	Valine	Threonine Valine		Valine
2	Histidine	Histidine	Leucine	Histidine	Histidine
4	Threonine	Threonine	Serine	Threonine	Threonine
5	Proline	Proline	Alanine	Proline	Glycine
8	Lysine	Lysine	Aspartic Acid	Lysine	Lysine
9	Serine	Asparagine	Alanine	Serine	Serine
10	Alanine	Alanine	Histidine	Alanine	Alanine
12	Threonine	Threonine	Threonine	Threonine	Alanine
13	Alanine	Threonine	Serine	Alanine	Alanine
21	Aspartic Acid	Aspartic Acid	Glutamic Acid	Aspartic Acid	Aspartic Acid
22	Glutamic Acid	Glutamic Acid	Lysine	Glutamic Acid	Glutamic Acid
33	Valine	Leucine	Valine	Valine	Valine
50	Threonine	Serine	Serine	Threonine	Threonine
52	Aspartic Acid	Aspartic Acid	Serine	Aspartic Acid	Aspartic Acid
56	Glycine	Glycine	Serine	Glycine	Serine
69	Glycine	Glycine	Serine	Glycine	Glycine
73	Aspartic Acid	Aspartic Acid	Glutamic Acid	Aspartic Acid	Aspartic Acid
76	Alanine	Asparagine	Histidine	Alanine	Alanine
87	Threonine	Glutamine	Glutamine	Threonine	Glutamine
104	Argenine	Lysine	Lysine	Lysine	Argenine
111	Valine	Valine	Serine	Valine	Valine
112	Cysteine	Cysteine	Alanine	Cysteine	Cysteine
113	, Valine	, Valine	Glutamic Acid	, Valine	Valine
114	Leucine	Leucine	Serine	Leucine	Leucine
115	Alanine	Alanine	Glutamic Acid	Alanine	Alanine
116	Histidine	Histidine	Leucine	Histidine	Histidine
120	Lysine	Lysine	Histidine	Lysine	Lysine
121	Glycine	Glycine	Aspartic Acid	Glycine	Glycine
122	Phenylalanine	Phenylalanine	Lysine	Phenylalanine	Phenylalanine
123	Threonine	Threonine	Serine	, , , , , , , , , , , , , , , , , , , ,	
125	Proline	Glutamine	Alanine	Proline	Threonine Glutamine
126	Valine	Valine	Valine	Valine	Leucine
130	Tyrosine	Tyrosine	Phenylalanine	Tyrosine	Tyrosine

 The old way of comparing the amino acid sequences between organisms was to count the differences between amino acids by hand and develop a phylogenic tree based on the number of differences between the organisms. Using the data above, compare the number of differences between Species 1 to each of the other species. Record your information in the data table below.

Species	Differences in Amino Acids from Species 1
Species 2	
Species 3	
Species 4	
Species 5	
· · ·	

Based on the differences in amino acid sequences, what species is most closely related to Species
1? (use the table you created on the previous page)

The table shows an amino acid comparison of cytochrome c, a protein involved in cellular respiration in aerobic organisms.

Amino Acid	Fruit Fly	Screwworm Fly	Hornworm Moth	Silkworm Moth	Comparison	# of Differences
Alanine	10%	10%	10%	10%	Fruit and Screwworm	
Arginine	4%	4%	4%	4%	Fruit and Hornworm	
Aspartic Acid	6%	6%	6%	6%	Fruit and Silkworm	
Cysteine	6%	6%	6%	4%	Screwworm and Hornworm	
Glutamic Acid	12%	12%	8%	8%	Screwworm and Silkworm	
Glycine	4%	2%	4%	4%	Hornworm and Silkworm	
Valine	2%	1%	4%	6%		

Amino Acid Composition of Cytochrome c in Some Organisms

3) According to the table above, the organisms most closely related to each other are

4) According to the table above, the organisms least closely related to each other are

There are many ways to illustrate the evolutionary relationships between organisms. **Cladograms** illustrate the pattern of relatedness between species. A **phylogram** shows the evolutionary relationships among various species that are believed to have a common ancestor.

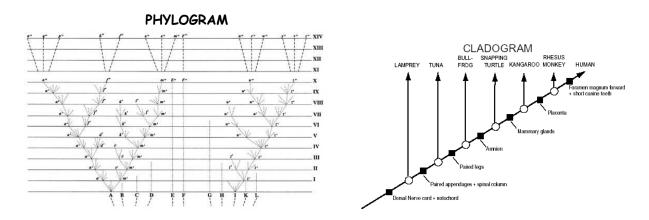
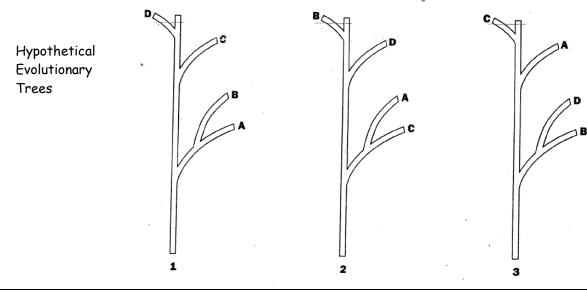



Figure 1: Methods of illustrating evolutionary relationships. phylogram on left, cladogram on right.

How Genes Work

How closely related are various species of living thing? Evolutionary trees, such as the ones below, can provide clues. The branches of evolutionary trees show the evolutionary patterns of the related species. The tree trunk represents time, with the top being the most recent point. The place where a branch splits off from the trunk or another branch indicates the time when a species evolved. The closer branches are to one another, the more closely related are the species.

Today, conformation of such a tree's structure often comes from DNA analysis. The evolutionary trees below show three possible evolutionary relationships for species A, B C, and D. Also below are the DNA nucleotide sequences that code for a type of protein found in each species. Your task is to determine which tree best represents the evolutionary relationship among the four species. Study the evolutionary trees and the DNA segments. Then respond to the following questions.

Nucleotide sequences of a type of protein found in each of the four species				
Species A	ACTGTTGCTTGGACTGAAATCCGAGGGTTTACTGTACCGCCTAGGTTAGTTGAT			
Species B	ACTGTTGATTCGACAGAAACCCGAGGCTTTACTGTACTG			
Species C	ACTGTTGATTGGACTGAAATCCGAGGGTTTACTGTACTG			
Species D	ACTGTTGATTCGACTGAAATCCGGGGCTTTACTGTACTG			

Analysis questions:

5) Compare each nucleotide sequence with the others. How many nucleotides differ when you compare:

A and B	A and C	A and D	B and C	B and D	C and D

6) For the nucleotide data to be relevant, what must you assume about the proteins? (think in terms of what part of the body they come from)

7) What do you look for when you compare the DNA to determine how closely the four species are related?

8) Which of the three phylogenetic trees (cladograms) is most likely to represent the evolutionary relationship among the four species? Explain.